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Solutions

(1) State true or false. Justify your answers.

(a) Suppose a group G contains exactly eight elements of order 10.
Then G has 3 cyclic subgroups of order 10.
Solution: False. In a cyclic subgroup of order 10 there are 4 elements
of order 10, each of which generates the group. If the intersection of two
cyclic subgroups of order 10 contains an element of order 10, then the
subgroups are equal, since this element will generate both the groups.
Therefore, if there were 3 cyclic subgroups of order 10, then there would
be 3 × 4 = 12 distinct elements in the group of order 10. But given
that there are exactly 8 such elements.

(b) There are 90 elements of order 4 in S6.
Solution: False. Every element of S6 can be written as a product of
disjoint cycles. The order of an element is the l.c.m. of the orders of
the factor cycles. Thus an element of order 4 must be either a product
of a 4 cycles and a 2 cycle or a product of a 4 cycle and two 1 cycles.
There are

(
6
4

)
× 3! = 90 elements of both type. Hence there are 180

elements of order 4 in S6.

(c) If G is a group having exactly one nontrivial proper subgroup, then
G is cyclic, of order p2 for some prime p.
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Solution: True. If the order of a group is n whose prime decomposition
is n = pa11 · · · p

ak
k , then there exists a subgroup of order pbii , for all 1 ≤

i ≤ k and bi ≤ ai. This and the fact that all non-trivial elements of a
cyclic group of order p2, except one, are generators and the exceptional
element generates a subgroup of order p, implies the statement.

(d) There exist infinite groups in which every element has finite order.
Solution: True. Take for example a direct sum of infinitely many
copies of Z/2Z.

(e) The set R>0 of all positive reals is the only subgroup of index 2 in
the multiplicative group of nonzero reals R×.
Solutions: True. Suppose H is a subgroup of index two. Then the
quotient group is Z/2Z. Then for every x ∈ R, x2 ∈ H. If x ∈ R>0,
then its positive square root

√
x ∈ R. Thus x = (

√
x)2 ∈ H. Hence

R>0 ⊂ H. If H 6= R>0, then there exists −y ∈ H, where y ∈ R>0.
Since 1

y
∈ R>0, therefore −y · 1

y
= −1 ∈ H and hence H = R. This is a

contradiction since H is a proper subgroup. So we must have H = R>0.

(2) Let G be a cyclic group of order n.

(a) Show that every subgroup of G is cyclic.
Solution: Let x be a generator of G. Let H be a subgroup of G. Let
d be the least non-zero integer such that xd ∈ H. Then we claim that
xd generates H. Suppose xk ∈ H. Let k = qd + r, where r < d. Then
xk((xd)q)−1 = xr ∈ H. By definition of d we must have r = 0. Thus
xk = (xd)q, which implies that H is generated by xd.

(b) Show that for each k dividing n, there exists a unique subgroup of
order k in G.
Solution: Let n = kq and let x be a generator ofG. Then the subgroup
generated by xq is a subgroup of order k. By the previous problem,
every subgroup of order k in G is cyclic. So any such subgroup will
contain an element of order k. Let xd be an element of order k. Then
we must have n | kd. Since n = kq, this implies q | d and hence xd is
contained in the subgroup generated by xq. This proves the uniqueness.

(c) Show that for any divisor d of n, G contains exactly φ(d) elements
of order d. Deduce the formula

∑
d|n φ(d) = n.
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Solution: By the previous problem, each element of order d is con-
tained in a unique cyclic subgroup of order d. In a cyclic subgroup of
order d there are exactly φ(d) many elements of order d.

The order of every element of a group G divides the order of G. There-
fore G can be written as a disjoint union:

G = ∪d|n{g ∈ G : order of g is d}.

Calculating the cardinality of both sides gives us the desired formula.

(3)(a) If K is a subgroup of G and N is a normal subgroup of G, prove that

(i) KN = {xy ∈ G : x ∈ K, y ∈ N} is a subgroup of G.
Solution: We need to check that KN contains the identity element
e, it is closed under multiplication and taking inverse. Both K and N ,
being subgroups, contain e. Therefore e = e · e ∈ KN . Let k1, k2 ∈ K
and n1, n2 ∈ N . Then the product of the two elements k1n1 and k2n2

of KN can be written as (k1n1)(k2n2) = (k1k2)((k
−1
2 n1k2)n2) ∈ KN .

Therefore KN is closed under multiplication. Let k ∈ K and n ∈ N ,
then the inverse of the element kn of KN can be written as (kn)−1 =
n−1k−1 = k−1(kn−1k−1) ∈ KN . Thus KN is closed under taking
inverse. Hence KN is a subgroup.

(ii) K ∩N is a normal subgroup of K.
Solution: Let k ∈ K and n ∈ K ∩ N . Since N is normal, therefore
knk−1 ∈ N . On the other hand since k, n, k−1 belong to K, which is a
subgroup, therefore knk−1 ∈ K. Thus knk−1 ∈ K ∩ N and so K ∩ N
is normal in K.

(iii) KN/N is isomorphic to K/(K ∩N).
Solution: Consider the composition

K ↪→ KN � KN/N,

where the first map is the inclusion and the second one is the quotient
map. This composition is surjective since any element in KN/N is of
the form knN = kN , where k ∈ K and n ∈ N , and has the preimage
k. The kernel of this composition is clearly K ∩ N . Thus we get an
isomorphism K/(K ∩N)→ KN/N .
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(b) If M and N are normal subgroups of G and N ⊂M , prove that
(G/N)/(M/N) ∼= G/M .

Solution: Consider the composition

G� G/N � (G/N)/(M/N),

where the both the maps are the relevant quotient maps. It is a surjective
map and its kernel is clearly M . Thus we get an isomorphism G/M →
(G/N)/(M/N).

(4) (a) Define conjugation action of a group G on itself.
Solution: Conjugation action of a group on itself is given by

G×G→ G

(h, g) 7→ hgh−1

(b) Show that the number of distinct conjugates of an element g ∈ G
is the index of the centraliser CG(g) in G.
Solution: This is just the orbit stabilizer theorem. Consider the con-
jugation action of the group on itself. Stabilizer of the element g ∈ G
under this action is CG(g). Hence the orbit must be in one to one
correspondence with G/CG(g). Thus cardinality of the orbit, which is
same as the number of distinct conjugates of g is equal to the index
[G : CG(g)] of the centralizer CG(g) of g in G.

(c) Establish the Class Equation.
Solution: G is a disjoint union of orbits under the conjugacy action.
Note that the orbits are the conjugacy classes in G. The elements of
the centre Z(G) of G are singleton orbits. Let us index the conjugacy
classes of G, which are not in Z(G), by the indexing set I. For each
i ∈ I, choose a representative gi of the corresponding conjugacy class.
By the previous problem, cardinality of the conjugacy class represented
by gi is [G : CG(gi)]. Therefore we have

|G| = |Z(G)|+
∑
i

[G : CG(gi)].

This is the class equation of G.
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(5)(i) State and prove Cauchy’s theorem for finite abelian groups.
Solution: Cauchy’s Theorem: If the order of a group G is divisible by
a prime p, then there exists an element of order p in G.
Proof in the abelian case: We will proceed by induction on the order of
the group G. The base case is when |G| = p. In this case G is a cyclic
group of order p and hence any generator is of order p. Now we carry
out the induction step. Let g be a non-identity element of G. If the
order of the group H generated by g is divisible by p, then the element
g|H|/p is an element of order p. If the order of H is not divisible by p,
then the order of the quotient group G/H must be divisible by p. By
induction hypothesis, there exists an element xH ∈ G/H of order p.
Suppose order of x is m. Then (xH)m = xmH = eH which implies that
p | m. Thus xm/p is an element of order p. This finishes the induction
step.

(ii) Using Class Equation, or otherwise, prove Cauchy’s theorem for
finite non-abelian groups.
Solutions: Again we will use induction. If p divides the centre Z(G)
of G, then by the abelian version, there is an element of order p in
Z(G) and hence in G. Otherwise by the Class equation there exits at
least one conjugacy class represented by an element gi such p - [G :
CG(gi)] = |G|/|CG(gi)|. Since p | |G|, this implies that p | |CG(gi)|.
Since gi /∈ Z(G), therefore CG(gi) is a proper subgroup of G. Hence by
induction hypothesis there exists an element of order p in CG(gi) and
hence G.

(6) (a) Show that CSn((12)(34)) = 8× (n−4)! for all n ≥ 4. Determine
the elements of the centralizer explicitly.
Solution: Let σ ∈ CSn((12)(34)). Then we must have σ((12)(34))σ−1 =
(σ(1), σ(2))(σ(3), σ(4)) = (12)(34). We note that σ has to take the
first four numbers to themselves and hence the last n − 4 to them-
selves. Thus σ must belong to a subgroup isomorphic to the product
{e, (12), (34), (12)(34), (13)(24), (14)(23), (1324), (1423)} × Sn−4. Thus
the cardinality of the centralizer of (12)(34) is 8× (n− 4)!.

(b) Show that if n is odd, the set of all n-cycles consists of two conjugacy
classes of equal size in An.
Solution: Suppose a group G acts on a set X. Let x ∈ X and let K
be the stabilizer of x in G. Let H be a subgroup of G. Then stabilizer
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of x in H is K ∩ H. Let us denote the orbits of x under G and H
actions by OG(x) and OH(x) repectively. By orbit stabilizer theorem
we have bijections between OG(x) and G/K, and between OH(x) and
H/(H ∩ K). By Problem (3)(a)(iii) H/(H ∩ K) ∼= HK/K and by
Problem (3)(b), (G/K)/(HK/K) ∼= G/HK. Thus we have

|OG(x)|
|OH(x)|

=
|G|
|HK|

.

In particular, for n odd, put G = Sn, H = An and X to be the set of n-
cycles in Sn. The action of Sn on X is transitive. Let x be any n-cycle.
Then the stabilizer K = CSn(x) of x in Sn is the subgroup generated by
x. This subgroup belongs to An. Hence in this case we have HK = H.
Thus |OSn(x)| = (|Sn|/|An|)|OAn(x)| = 2|OAn(x)|. This proves that
the set of all n-cycles consists of exactly two conjugacy classes of equal
sizes in An.
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